Joint Activity Detection, Channel Estimation, and Data Decoding for Grant-free Massive Random Access

نویسندگان

چکیده

In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access network on limited radio resources. Recently, grant-free random has emerged as promising mechanism for this challenging but its potential not been fully unleashed. particular, available auxiliary information exploited, including common sparsity pattern in received pilot and data signal, well channel decoding information. This paper develops advanced receivers holistic manner improve performance by jointly designing activity detection, estimation, decoding. To tackle algorithmic computational challenges, turbo structure is adopted at joint receiver. For enhancement, all symbols are utilized estimate state, user activity, soft symbols, which effectively exploits pattern. Meanwhile, extrinsic from decoder will assist estimation detection. reduce complexity, low-cost side (SI)-aided receiver also proposed, where provides update estimates whether active or not. Simulation results show that able errors effectively, supporting twice many users compared separate design disregards sparsity. addition, SI-aided notably outperforms conventional methods relatively low complexity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is...

متن کامل

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Joint Channel Estimation and Turbo Decoding for OFDM-based Systems

In this paper, we propose a joint channel estimation and decoding scheme using soft bit output information in OFDM-based systems. In order to estimate the complex OFDM channel amplitudes, the estimation algorithms usually rely on the Pilot Signal Assisted Modulation (PSAM). We enhanced this method by using the soft code bits after each turbo decoding iteration in a feedback loop. This way, the ...

متن کامل

Joint Decoding and Channel Estimation for Space-Time Codes

We consider the problem of joint decoding and channel estimation for space-time trellis codes transmitted over f lat slowly varying Rayleigh fading channels. We assume that the receiver has no a-priori knowledge of the channel parameters. The amount of training data required is reduced by using a decision feedback approach to iteratively improve channel estimates.

متن کامل

Joint decoding and channel estimation for linear MIMO channels

We consider the problem of joint decoding and channel estimation for linear multiple-input multipleoutput channels. We assume that the receiver has no apriori knowledge of the channel parameters. The amount of training data required is reduced by using a decision feedback approach to iteratively improve channel estimates. We present experimental results for joint channel estimation and decoding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Internet of Things Journal

سال: 2023

ISSN: ['2372-2541', '2327-4662']

DOI: https://doi.org/10.1109/jiot.2023.3243947